
beginner

beginner ii

COLLABORATORS

TITLE :

beginner

ACTION NAME DATE SIGNATURE

WRITTEN BY March 1, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

beginner iii

Contents

1 beginner 1

1.1 Exception Handling . 1

1.2 Procedures with Exception Handlers . 1

1.3 Raising an Exception . 2

1.4 Automatic Exceptions . 5

1.5 Raise within an Exception Handler . 6

beginner 1 / 8

Chapter 1

beginner

1.1 Exception Handling

Exception Handling

Often your program has to check the results of functions and do
different things if errors have occurred. For instance, if you try to
open a window (using OpenW), you may get a NIL pointer returned which
shows that the window could not be opened for some reason. In this case
you normally can’t continue with the program, so you must tidy up and
terminate. Tidying up can sometimes involve closing windows, screens and
libraries, so sometimes your error cases can make your program cluttered
and messy. This is where exceptions come in--an exception is simply an
error case, and exception handling is dealing with error cases. The
exception handling in E neatly separates error specific code from the real
code of your program.

Procedures with Exception Handlers

Raising an Exception

Automatic Exceptions

Raise within an Exception Handler

1.2 Procedures with Exception Handlers

Procedures with Exception Handlers
==================================

A procedure with an exception handler looks like this:

PROC fred(params...) HANDLE
/* Main, real code */

beginner 2 / 8

EXCEPT
/* Error handling code */

ENDPROC

This is very similar to a normal procedure, apart from the HANDLE and
EXCEPT keywords. The HANDLE keyword means the procedure is going to have
an exception handler, and the EXCEPT keyword marks the end of the normal
code and the start of the exception handling code. The procedure works
just as normal, executing the code in the part before the EXCEPT, but when
an error happens you can pass control to the exception handler (i.e., the
code after the EXCEPT is executed).

1.3 Raising an Exception

Raising an Exception
====================

When an error occurs (and you want to handle it), you raise an
exception using either the Raise or Throw function. You call Raise with a
number which identifies the kind of error that occurred. The code in the
exception handler is responsible for decoding the number and then doing
the appropriate thing. Throw is very similar to Raise, and the following
description of Raise also applies to Throw. The difference is that Throw
takes a second argument which can be used to pass extra information to a
handler (usually a string). The terms ‘raising’ and ‘throwing’ an
exception can be used interchangeably.

When Raise is called it immediately stops the execution of the current
procedure code and passes control to the exception handler of most recent
procedure which has a handler (which may be the current procedure). This
is a bit complicated, but you can stick to raising exceptions and handling
them in the same procedure, as in the next example:

CONST BIG_AMOUNT = 100000

ENUM ERR_MEM=1

PROC main() HANDLE
DEF block
block:=New(BIG_AMOUNT)
IF block=NIL THEN Raise(ERR_MEM)
WriteF(’Got enough memory\n’)

EXCEPT
IF exception=ERR_MEM

WriteF(’Not enough memory\n’)
ELSE

WriteF(’Unknown exception\n’)
ENDIF

ENDPROC

This uses an exception handler to print a message saying there wasn’t
enough memory if the call to New returns NIL. The parameter to Raise is
stored in the special variable exception in the exception handler part of
the code, so if Raise is called with a number other than ERR_MEM a message

beginner 3 / 8

saying "Unknown exception" will be printed.

Try running this program with a really large BIG_AMOUNT constant, so
that the New can’t allocate the memory. Notice that the "Got enough
memory" is not printed if Raise is called. That’s because the execution
of the normal procedure code stops when Raise is called, and control
passes to the appropriate exception handler. When the end of the
exception handler is reached the procedure is finished, and in this case
the program terminates because the procedure was the main procedure.

If Throw is used instead of Raise then, in the handler, the special
variable exceptioninfo will contain the value of the second parameter.
This can be used in conjunction with exception to provide the handler with
more information about the error. Here’s the above example re-written to
use Throw:

CONST BIG_AMOUNT = 100000

ENUM ERR_MEM=1

PROC main() HANDLE
DEF block
block:=New(BIG_AMOUNT)
IF block=NIL THEN Throw(ERR_MEM, ’Not enough memory\n’)
WriteF(’Got enough memory\n’)

EXCEPT
IF exception=ERR_MEM

WriteF(exceptioninfo)
ELSE

WriteF(’Unknown exception\n’)
ENDIF

ENDPROC

An enumeration (using ENUM) is a good way of getting different
constants for various exceptions. It’s always a good idea to use
constants for the parameter to Raise and in the exception handler, because
it makes everything a lot more readable: Raise(ERR_MEM) is much clearer
than Raise(1). The enumeration starts at one because zero is a special
exception: it usually means that no error occurred. This is useful when
the handler does the same cleaning up that would normally be done when the
program terminates successfully. For this reason there is a special form
of EXCEPT which automatically raises a zero exception when the code in the
procedure successfully terminates. This is EXCEPT DO, with the DO
suggesting to the reader that the exception handler is called even if no
error occurs. Also, the argument to the Raise function defaults to zero
if it is omitted (see Default Arguments).

So, what happens if you call Raise in a procedure without an exception
handler? Well, this is where the real power of the handling mechanism
comes to light. In this case, control passes to the exception handler of
the most recent procedure with a handler. If none are found then the
program terminates. ‘Recent’ means one of the procedures involved in
calling your procedure. So, if the procedure fred calls barney, then when
barney is being executed fred is a recent procedure. Because the main
procedure is where the program starts it is a recent procedure for every
other procedure in the program. This means, in practice:

beginner 4 / 8

* If you define fred to be a procedure with an exception handler then
any procedures called by fred will have their exceptions handled by
the handler in fred if they don’t have their own handler.

* If you define main to be a procedure with an exception handler then
any exceptions that are raised will always be dealt with by some
exception handling code (i.e., the handler of main or some other
procedure).

Here’s a more complicated example:

ENUM FRED=1, BARNEY

PROC main()
WriteF(’Hello from main\n’)
fred()
barney()
WriteF(’Goodbye from main\n’)

ENDPROC

PROC fred() HANDLE
WriteF(’ Hello from fred\n’)
Raise(FRED)
WriteF(’ Goodbye from fred\n’)

EXCEPT
WriteF(’ Handler fred: \d\n’, exception)

ENDPROC

PROC barney()
WriteF(’ Hello from barney\n’)
Raise(BARNEY)
WriteF(’ Goodbye from barney\n’)

ENDPROC

When you run this program you get the following output:

Hello from main
Hello from fred
Handler fred: 1
Hello from barney

This is because the fred procedure is terminated by the Raise(FRED) call,
and the whole program is terminated by the Raise(BARNEY) call (since
barney and main do not have handlers).

Now try this:

ENUM FRED=1, BARNEY

PROC main()
WriteF(’Hello from main\n’)
fred()
WriteF(’Goodbye from main\n’)

ENDPROC

PROC fred() HANDLE
WriteF(’ Hello from fred\n’)

beginner 5 / 8

barney()
Raise(FRED)
WriteF(’ Goodbye from fred\n’)

EXCEPT
WriteF(’ Handler fred: \d\n’, exception)

ENDPROC

PROC barney()
WriteF(’ Hello from barney\n’)
Raise(BARNEY)
WriteF(’ Goodbye from barney\n’)

ENDPROC

When you run this you get the following output:

Hello from main
Hello from fred
Hello from barney
Handler fred: 2

Goodbye from main

Now the fred procedure calls barney, so main and fred are recent
procedures when Raise(BARNEY) is executed, and therefore the fred
exception handler is called. When this handler finishes the call to fred
in main is finished, so the main procedure is completed and we see the
‘Goodbye’ message. In the previous program the Raise(BARNEY) call did not
get handled and the whole program terminated at that point.

1.4 Automatic Exceptions

Automatic Exceptions
====================

In the previous section we saw an example of raising an exception when
a call to New returned NIL. We can re-write this example to use
automatic exception raising:

CONST BIG_AMOUNT = 100000

ENUM ERR_MEM=1

RAISE ERR_MEM IF New()=NIL

PROC main() HANDLE
DEF block
block:=New(BIG_AMOUNT)
WriteF(’Got enough memory\n’)

EXCEPT
IF exception=ERR_MEM

WriteF(’Not enough memory\n’)
ELSE

WriteF(’Unknown exception\n’)
ENDIF

ENDPROC

beginner 6 / 8

The only difference is the removal of the IF which checked the value of
block, and the addition of a RAISE part. This RAISE part means that
whenever the New function is called in the program, the exception ERR_MEM
will be raised if it returns NIL (i.e., the exception ERR_MEM is
automatically raised). This unclutters the program by removing a lot of
error checking IF statements.

The precise form of the RAISE part is:

RAISE exception IF function() compare value ,
exception2 IF function2() compare2 value2 ,
...
exceptionN IF functionN() compareN valueN

The exception is a constant (or number) which represents the exception
to be raised, function is the E built-in or system function to be
automatically checked, value is the return value to be checked against,
and compare is the method of checking (i.e., =, <>, <, <=, > or >=).
This mechanism only exists for built-in or library functions because they
would otherwise have no way of raising exceptions. The procedures you
define yourself can, of course, use Raise to raise exceptions in a much
more flexible way.

1.5 Raise within an Exception Handler

Raise within an Exception Handler
=================================

If you call Raise within an exception handler then control passes to
the next most recent handler. In this way you can write procedures which
have handlers that perform local tidying up. By using Raise at the end of
the handler code you can invoke the next layer of tidying up.

As an example we’ll use the Amiga system functions AllocMem and FreeMem
which are like the built-in function New and Dispose, but the memory
allocated by AllocMem must be deallocated (using FreeMem) when it’s
finished with, before the end of the program.

CONST SMALL=100, BIG=123456789

ENUM ERR_MEM=1

RAISE ERR_MEM IF AllocMem()=NIL

PROC main()
allocate()

ENDPROC

PROC allocate() HANDLE
DEF mem=NIL
mem:=AllocMem(SMALL, 0)
morealloc()
FreeMem(mem, SMALL)

beginner 7 / 8

EXCEPT
IF mem THEN FreeMem(mem, SMALL)
WriteF(’Handler: deallocating "allocate" local memory\n’)

ENDPROC

PROC morealloc() HANDLE
DEF more=NIL, andmore=NIL
more:=AllocMem(SMALL, 0)
andmore:=AllocMem(BIG, 0)
WriteF(’Allocated all the memory!\n’)
FreeMem(andmore, BIG)
FreeMem(more, SMALL)

EXCEPT
IF andmore THEN FreeMem(andmore, BIG)
IF more THEN FreeMem(more, SMALL)
WriteF(’Handler: deallocating "morealloc" local memory\n’)
Raise(ERR_MEM)

ENDPROC

The calls to AllocMem are automatically checked, and if NIL is returned
the exception ERR_MEM is raised. The handler in the allocate procedure
checks to see if it needs to free the memory pointed to by mem, and the
handler in the morealloc checks andmore and more. At the end of the
morealloc handler is the call Raise(ERR_MEM). This passes control to the
exception handler of the allocate procedure, since allocate called
morealloc.

There’s a couple of subtle points to notice about this example.
Firstly, the memory variables are all initialised to NIL. This is because
the automatic exception raising on AllocMem will result in the variables
not being assigned if the call returns NIL (i.e., the exception is raised
before the assignment takes place), and the handler needs them to be NIL
if AllocMem fails. Of course, if AllocMem does not return NIL the
assignments work as normal.

Secondly, the IF statements in the handlers check the memory pointer
variables do not contain NIL by using their values as truth values. Since
NIL is actually zero, a non-NIL pointer will be non-zero, i.e., true in
the IF check. This shorthand is often used, and so you should be aware of
it.

It is quite common that an exception handler will want to raise the
same exception after it has done its processing. The function ReThrow
(which has no arguments) can be used for this purpose. It will re-raise
the exception, but only if the exception is not zero (since this special
value means that no error occurred). If the exception is zero then this
function has no effect. In fact, the following code fragments (within a
handler) are equivalent:

ReThrow()

IF exception THEN Throw(exception, exceptioninfo)

There are two examples, in Part Three, of how to use an exception
handler to make a program more readable: one deals with using data files
(see String Handling and I-O) and the other deals with opening screens and
windows (see Screens).

beginner 8 / 8

	beginner
	Exception Handling
	Procedures with Exception Handlers
	Raising an Exception
	Automatic Exceptions
	Raise within an Exception Handler

